sample of business plan proposal college thesis writing services marine biology phd thesis traditional literature review phd dissertation search writing help
Skip to main content

Controlled release of therapeutical agents from polymer brush coatings by employing reversible polymer condensation using ionic cross-linkers


Kurzfassung

  • Surface coat with drug encapsulation for medical implants
  • Triggered drug release by contact with physiological salt concentrations
  • Quickly achieve therapeutic levels at actual site of inflammation

Hintergrund

Post-surgery inflammations are one of the most common problems in modern clinical practice. The consequences for the patients reach from simple inconvenience to revision surgeries, or even death. If the implant has to be removed prematurely as a consequence of inflammation, the duration of both, patient hospitalization and physical inactivity is increased. This leads to elevated economic and social expenses. In conventional approaches, antibiotics are either administered systemically or via local antibiotic depots. However, these approaches are prone to induce local overdosing and also fail to provide ongoing inflammatory protection during the critical time window. Thus, a repeated administration of antibiotics becomes necessary, which in return often leads to antibiotic resistance of the pathogens.


Bilder & Videos


Lösung

The invention describes a mechanism by which brush polymer coatings are used as local drug depots. Drug molecules are temporally entrapped in the coating by compacting the brush layer and transiently stabilizing it with multivalent ions. Upon exposure to the physiological environment of the human body (i.e., physiological NaCl concentrations), this compacted state is reversed thus liberating the encapsulated drug substance. A proof-of-concept study has demonstrated that only few requirements have to be met for this mechanism to operate; any soluble, charged polymer (e.g., hyaluronic acid or poly-L-lysin) can be used, and the coating can be generated on a broad range of surfaces (including polymeric and metallic materials; the mechanism is fully compatible with a range of surface modification strategies). Furthermore – depending on the polymer used for coating generation – a multitude of different drugs can be encapsulated. Thus, this invention is highly versatile and can be tailored for different application scenarios.


Anwendungsbereiche

Coating of medical devices or implants to reduce post-surgery inflammation


Bayerische Patentallianz GmbH


089 5480177-0
kontakt@baypat.de
www.baypat.de
Adresse
Destouchesstr. 68
80796 München



Entwicklungsstand

Machbarkeit


Angebot Anbieter-Website


Kontakt | Geschäftsstelle

TransferAllianz e. V.
Christiane Bach-Kaienburg
(Geschäftsführerin)

c/o TransMIT GmbH
Kerkrader Straße 3
D-35394 Gießen