Skip to main content

Tissue-specific hydrogel-based ECM hybrid material used as a precisely fitting implant for the treatment of extensive tissue defects


Abstract

This technology provides the fundamental for a native wound gel that is capable of comprehensive treatment of deep and large area wounds. Due to its tissue-specific composition and high bioactivity it ensures efficient healing. Glycobiological modifications of the tissue-specific hydrogel result in a customizable wound gel which could replace a skin transplant in many cases.


Background

If skin injuries extend to the subcutaneous tissue (subcutis), patients will most likely need an autologous skin transplant (transplantation of the patient's own skin). This usually has far-reaching consequences for the patient, and also quickly reaches natural and aesthetic limits.


Images & Videos


Problem

The clinical treatment of deep and extensive wounds, e.g. after burns, remains challenging. Conventional synthetic hydrogels often do not adequately reflect the complexity and regenerative properties of the natural ECM.


Solution

Compared to conventional, synthetic hydrogels, this material is based on an ECM produced in the laboratory using the patient's own cells. Based on a patent-pending technology for the production of an extracellular matrix (ECM) with specifically addressable functional groups ("clickECM"), the basis for a native wound gel has now been created that could also close deep and large area wounds and, due to its tissue-specific composition and high bioactivity, ensure efficient healing.
During the synthesis of the matrix by the patient's own cells, functional groups are incorporated into this matrix by metabolic glycoengineering. These specifically addressable functional groups can later be used to link bioactive molecules or other substances according to the intended application.
For example, photo-polymerizable biopolymers bound to the ECM could, after optimal filling of the wound bed, ensure precise gelling and closing of the wound (precisely fitting wound closure). The flexibility of the material also makes it possible to precisely treat contour defects. Furthermore, this functionalized matrix can be "loaded" or equipped with various active ingredients that expedite wound healing or have an antimicrobial effect, for example.


Advantages

  • highly compatible biological material that promotes wound healing with the patient’s own cells
  • contour defects can be corrected
  • flexibly adaptable through specifically addressable functional groups
  • active ingredients can be incorporated

Scope of application

This innovative further development sets the course for effective treatment of extensive tissue defects such as third-degree burns, chronic wounds, chemical burns, etc.


Service

The scientists are now looking for an industrial partner in order to develop a marketable product from this promising approach.
Technologie-Lizenz-Büro (TLB) GmbH is commissioned with the exploitation on behalf of the patent holders and is seeking industry partners to enter into cooperation in order to develop the product for the market or for licensing.


Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Anne Böse, M.Sc.
+ 49 721 790 040
boese@tlb.de
www.tlb.de
Address
Ettlinger Straße 25
76137 Karlsruhe



Development status

Proof of concept


Patent situation

  • DE 102014222898 A1 pending
  • EP 3218025 A1 pending

Keywords

Tissue-specific, ECM hydrogel-based hybrid material, wound healing, wound care, skin transplantation, tolerance, tissue defects, contour defects, burns, wound bed, glycobiological modification

Offer at Providers website


Contact | Main Office

TransferAllianz e. V.
Christiane Bach-Kaienburg
(Geschäftsführerin)

c/o TransMIT GmbH
Kerkrader Straße 3
D-35394 Gießen