Opportunities for collaboration

CHANNELMAT wants to take the next step and is looking for:
- infrastructure and know-how of research-oriented companies
- development of marketable concepts for novel products
- knowledge-transfer into already existing products

CHANNELMAT is funded by

Patent information: WO2016177872A1

Contact Details:
Kiel University
Faculty of Engineering
Institute for Material Sciences
Biocompatible Nanomaterial
Prof. Christine Selhuber-Unkel
Tel: 0431/880-6198
E-Mail: cse@tf.uni-kiel.de

Novel microstructured 3D hydrogels

- Interconnected microchannels
- Channels of subcellular size
- Optimal environment for cells
The Motivation

Materials providing a large cell-material contact area and well-defined mechanical properties are excellent for controlling cells by mechanotransduction. Porous hydrogels provide such a solution.

Hydrogel requirements:
- to create an environment, which is favorable for cell growth.
- to increase the contact area between cells and their surrounding environment to optimize mechanotransduction.

The Invention

The innovative 3D biomaterial serves as a platform for controlling mechanotransduction by mimicking natural 3D cellular environments. It contains a novel form of microporous structures represented by micron-sized channels embedded in a hydrogel matrix of a well-defined stiffness.

The Production Process

- Sacrificial template with micron-sized zinc oxide tetrapods in defined density and size
- Embedded zinc oxide template in hydrogel
- Hydrolysis of zinc oxide
- Hydrogel swelling and washing
- 3D hydrogel with interconnected microchannels ready for cell experiments

The Application

The specific structure and size distribution of micro-channels in the 3D hydrogel can be used to decontaminate e.g. contact lense cases and water reservoirs from pathogens such as *Acanthamoeba castellanii.*