

Efficient Hardware-Based Real-time Forward Error Correction for Safety-Critical Applications

Technology Description

Monthly system soft error rate as a function of the number of chips in the system and the amount of embedded SRAM per chip.

Quelle: R. Baumann, "Soft Errors in Advanced Computer Systems", http://doi.ieeecomputersociety.org/10.1109/MDT.2005.69 Real-time control of safety-critical applications is becoming increasingly important in a variety of markets as the automotive, aviation, financial or medical sector. Furthermore, with electronic components becoming smaller and more complex, the hardware immanent error probability arises.

We present a robust and reliable forward error correction technique enabling data transmission in noisy environments. Our mathematically proved decoder corrects single-bit and multi-bit errors in real-time.

It can be easily realized on hardware level in embedded systems: A simple non-clocked combinational circuit consisting of only a few logic gates performs the decoding. Registers or flip-flops are not needed. The decoder works for a wide variety of block codes. This allows the code characteristics like block size and correctable errors to be tuned to your individual needs.

Innovation

Up to now: On hardware level, only single-bit or very complex and expensive multi-bit error correction.

Now: Real-time single- and multi-bit error correction on hardware level in embedded systems with only a few logic gates.

Applications

Electronic safety and industrial control systems in

- Automotive electronics, e.g. advanced driver assistance systems
- Avionics

- Enterprise Computing, e.g. error correction on memory and storage devices
- Medical engineering

Advantages

- Only very few and simple electronic components needed.
- Realtime multi-bit error correction.
- Code parameters like block size and maximal number of correctable errors adjustable.
- No clock signal required, no flip-flops used.

Proof of Concept

Prototype (CPLD).

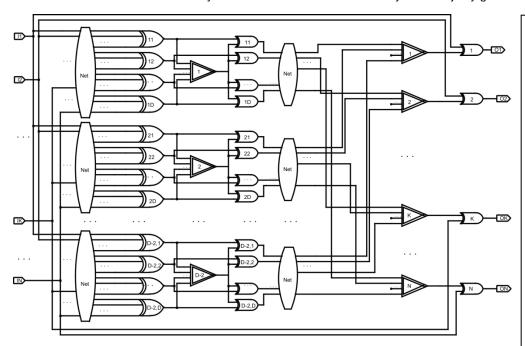
More information is located on the back.

Requested Cooperation

Licensing partners.

Patent granted. Priority Date: 2013-02-01

Dr. Rolf Hecker Eberhard Karls Universität Tübingen Technology Transfer Office Keplerstraße 2 72074 Tübingen · Germany

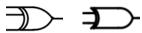

campus

SCIENTIST

Further Information about the New Decoder

General Schematic of the New Decoder

The new decoder consists of three layers of modulo-2-adders and two layers of majority gates.


N = Code block size

K = Information size

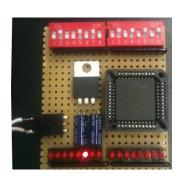
T = Correctable errors per block

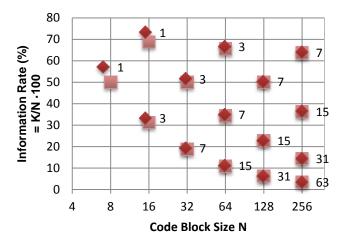
D = Minimum distance

Modulo-2-adder

Majority gate

Fixed wiring without logic gates




Prototype

A Wide Choice of Code Parameters

The decoder has been realized on a CPLD for a [N=16, K=11, T=5] code to demonstrate correctness and reliability of our decoding algorithm.

The new decoder is applicable to a wide range of codes. The chart and the table on the right-hand side display how many errors our decoder is capable to correct depending on the chosen block size and information rate.

N	K	T	
7 or 8	4	1	
15 or 16	5	3	
	11	1	
31 or 32	6	7	
	16	3	
63 or 64	7	15	
	22	7	
	42	3	
127 or 128	8	31	
	29	15	
	64	7	
255 or 256	9	63	
	37	31	
	93	15	
	163	7	

Electronic Components

For selected codes, the number of required components is listed in the table below distinguishing the number of inputs.

N, K, T	15, 11, 1	16, 11, 1	31, 16, 3	32, 16, 3	63, 42, 3	64, 42, 3
Madula 2 Adday	18 x	19 x	65 x	64 x	91 x	90 x
Modulo-2-Adder 9 x	9 x	8 x	49 x	48 x	9 x 8	48 x 8
Majority	11 x	11 x	16 x 6	16 x 6	42 x 6	42 x 6
	3 x	2 x	7 x 7	6 x 8	7 x 7	6 x 8